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Driving behavior studies often capture electronic measures at 1-30 Hz for long intervals.  It is important 
to find stochastic models that describe such data, with parameters that can be interpreted and accurately 
estimated.  In this report, we review a family of models that are useful in describing the lateral position 
of a vehicle in a simulator.  These models consist of “projection” and “signed error” pieces, with the 
latter containing a parameter representing the tendency for drivers to return the vehicles to a central 
position.  We use ad hoc and likelihood-based methods to fit these models, but these all result in biased 
estimates.  Fortunately, in two-group studies, simulations suggest that such biases may offset each other 
and hence that two-group comparisons may have acceptable accuracy.  If we can resolve the bias issue, 
electronic data from a vehicle might be useful in predicting future errors and crashes. 
 
INTRODUCTION 
 With advances in technology, an increasing amount of vehicular and driving simulator data are 
collected for research and other purposes in vehicles and driving simulators. Electronic measures, such 
as speed, acceleration, steering wheel angle, and lane position, are often captured at 1-30 Hz or even 
greater frequency, leading to huge datasets.  For example, one 30-minute driving session in a 30-Hz 
simulator would result in 54,000 rows of data, while 90 days of driving for 30 minutes per day in an on-
road naturalistic setting would result in 1.62 million rows of data if the capture rate is 10 Hz.  With such 
volumes of data, it is imperative to reduce the data into meaningful metrics.  To explore the statistical 
properties of such metrics, one needs models that could produce the data, as well as a specific method 
for estimating the parameters of such models.  In this paper, we review a family of models that has been 
useful for reducing lateral position data in a driving simulator, which might also be used in real vehicles 
and with other variables.  We then describe the distribution and likelihood functions based on these 
models, and present basic statistical properties of three methods used to estimate the model parameters. 

 

 
 

Figure 1.  Example of Lateral Position Data in a Simulator 
 
THE MODEL 

The solid line of Figure 1 displays sample lane position data at the center of the vehicle, Yt, at a 
given time, t.  Note Yt=0 when the physical center of the vehicle is in the center of the driving lane, while 
Yt > 0 and Yt < 0 correspond to being left and right of center, respectively.  Drivers will tend to correct 
themselves toward the middle of the lane as they approach a boundary, but since such boundaries can 
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still be crossed, they might be termed “semi-reflective”.  In this setting, lane position may be based on 
a third order autoregressive time series (Kendall & Ord, 1990), with an added sign term (Dawson et al., 
2010).  The general form of such a time series model for t > 3 is given by 

Yt = g(Yt-1, Yt-2, Yt-3) (“projection piece”) 
+ |et| It,  (“signed error piece”), where 

et ~ N(0,σ2), and 
pt = prob (It = -1), else It=1. 

To begin with, 𝑔 .  is an unspecified function predicting Yt with the three most recent observed lateral 
positions. The residual 𝑒$ is the difference between the observed and projected/predicted Y values, while 
𝐼$ is a signed indicator equaling −1 and 1 with probabilities 𝑝$ and 1 − 𝑝$	respectively. 

To aid interpretation, we reparameterize (Yt-1, Yt-2, Yt-3) to (W1t , W2t , W3t ), by letting,  
W1t = Y t-1 , 

W2t = Y t-1 + (Y t-1 - Y t-3)/2, and 
W3t = 3Y t-1 – 3Y t-2 + Y t-3. 

Note these are flat, linear, and quadratic trends, projected from the most recent time point.  Thus, the 
projected values can be codified as a linear combination of such trends, by specifying  

g(Yt-1, Yt-2, Yt-3) = β1 W1t + β2 W2t + β3 W3t . 
This linear combination can be identified as a weighted average, by requiring β1 + β2 + β3 = 1, as a 
“summation constraint” and requiring β1 ≥ 0, β2 ≥ 0, and β3 ≥ 0 as a “range constraint”. 
 To give a functional form on pt, we adopt a simple logistic model: 

log(pt /[1-pt]) = λ0 + λ1 Yt-1. 
A high positive value of λ1 is generally desirable, as it indicates an increased tendency for the actual 
value to be closer to 0 (i.e., the middle of the driving lane for lane position data) than what the previous 
3 points are predicting based on the β’s.  Thus, we sometimes refer to this as the re-centering parameter.  
In Dawson et al. (2010), for example, healthy elderly drivers had an estimated re-centering parameter 
that was 40% higher than that of drivers with mild Alzheimer’s disease. Also, Johnson, Dawson, and 
Rizzo (2011) found this re-centering parameter to be associated with certain tests neuropsychological 
ability, as well as on-road safety errors on a fixed route. 
 
THE CONDITIONAL FUNCTION AND THE LIKELIHOOD 
 It can be shown that, for t > 3, the joint conditional function of (Yt, It) is  
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As described by Hamilton (1994), in many time series settings it is more feasible to apply a conditional 
likelihood based on the Markov property rather than the unconditional likelihood. In this context, it can 
be shown that the conditional log-likelihood is 
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METHODS OF ESTIMATION 
 We consider three methods for estimating the model parameters.  The first is called the “Single-
Pass” (“SP”) approach, as it uses standard statistical techniques (multiple linear regression 
accommodating the summation and range constraints described above to estimate the β and σ terms, 
followed by simple logistic regression to estimate the λ terms), rather than an iterative process.  This 
approach is almost identical to that originally proposed by Dawson et al. (2010), and described in detail 
by O’Shea & Dawson (2018).  Briefly, the steps are as follows: 
 

• Impose the summation constraint by replacing β1 in the model with 1-(β2 + β3). 
• Use multiple linear regression, with no intercept, to estimate the parameters of the model: 

Yt – W1t = β2 (W2t - W1t ) + β3 (W3t - W1t ) + et 
• Check to ensure that estimates of β2, β3, and β2+β2 are all in the range of [0,1], remapping 

them to the closest point in the parameter space if they are out of range. 
• Record the sign of the estimated errors from the regression model, and use simple logistic 

regression to model the probability of a negative sign (hence, obtaining estimates of λ0 and λ1). 
 
The other two methods are based on the conditional log-likelihood shown on the previous page.  

We first employed a grid search algorithm (“Grid”) to attempt maximization of the conditional 
likelihood, which we would expect to be slow but reliable.  We next used a modified Newton-Raphson 
(“NRmod” algorithm), which we anticipated to be faster.  Unfortunately, due to the It being 
discontinuous and dependent on the β vector, this approach does not have the usual theoretical 
justification.  It also required additional modifications, such as half-stepping and using the Single-Pass 
estimates as starting values.  More details of these approaches have been documented by Johnson (2013). 
 We performed computer simulations to examine the mean, variance, mean bias, and confidence 
interval coverage probabilities at a specific setting of the parameters.  Due to the anticipated slow speed 
of the grid search, we limited our study to 100 datasets, each with a sample size of 20 subjects, with 
each subject having 600 data points after 100 points of burn-in.  
 
RESULTS 

Table 1 shows the specific parametric settings for the simulation, as well as the performance 
results.  Note that the single-pass approach had mean biases of magnitudes of 0.1 to 11.4%, depending 
on the parameter, with the re-centering parameter (λ1) having a -3% mean bias.  For most parameters, 
the grid search performed noticeably better in terms of less bias and higher coverage probability.  
Unfortunately, the main exception to this trend was that it performed worse than the single-pass 
approach for λ1, which may be of primary interest.  The modified Newton-Raphson approach performed 
worse than the grid search for all parameters.   

To gain additional understanding regarding why the grid search was not a clear winner over the 
somewhat ad hoc single-pass approach, we examined the log-likelihood functions for more insight. To 
reduce the dimensionality, we set 𝜆? = 0, which corresponds to an average location centered between 
the semi-reflective boundaries of the series. We additionally set 𝛽2 = 0.0546 and 𝜎: = 0.0046, which 
are values provided as the base parametric setting for data generation and are not adjusted as we calculate 
the log-likelihood. Data for a single time series with an exploitable length 𝑇 = 1,000 were generated, 
where in addition to the above values, we set 𝛽3 = 0.4666, 𝛽4 = 0.4788,	(by subtraction), and 
𝜆2 = 2.2890.  Finally, the value of the conditional log-likelihood is calculated such that 𝛽3 and 𝜆2 vary 
along the ranges 0.000, 0.650 	and −0.804, 5.221 	respectively with 100 equally spaced values each. 
It is also noted that the value of 𝛽4 is determined by subtraction via the summation constraint described 
earlier. The resulting conditional log-likelihood surfaces are shown in 3- and 2-dimensional graphs in 
Figures 2 and 3. 
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Table 1: Parametric Settings and Results of Simulation Studies 
 

Parametric Setting 𝜽  
   𝜷𝟏 

0.0546 
𝜷𝟐 

0.4666 
𝜷𝟑 

0.4788 
𝝈𝒆𝟐 

2.14e-5 
𝝀𝟎 

0.6340 
𝝀𝟏 

2.2890 

Method    𝜷𝟏 𝜷𝟐 𝜷𝟑 𝝈𝒆𝟐 𝝀𝟎 𝝀𝟏 

Overall 
Mean 

SP    0.061 0.433 0.506 2.14e-5 0.617 2.224 

Grid    0.057 0.462 0.481 2.14e-5 0.697 2.522 

NRmod    0.059 0.445 0.495 2.10e-5 0.594 1.530 

Overall 
Variance 

SP    0.0001 0.0007 0.0007 1.48e-
12 0.021 0.179 

Grid    0.0002 0.0008 0.0006 1.51e-
12 0.025 0.215 

NRmod    0.0002 0.0007 0.0007 1.41e-
12 0.021 0.187 

Mean Bias 
(%) 

SP    11.402 -7.242 5.758 -0.080 -2.619 -2.860 

Grid    4.314 -0.887 0.373 -0.122 0.579 10.181 

NRmod    8.598 -4.531 3.435 -1.929 -6.304 -
33.138 

Coverage 
Probability 

(%) 

SP    36.00 0.00 2.00 96.00 92.00 84.00 

Grid    93.00 88.00 95.00 94.00 94.00 41.00 

NRmod    57.00 10.00 24.00 68.00 75.00 0.00 
 
 

 
 

Figure 2.  The Log-Likelihood Surface in Three Dimensions from Various Angles 
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Figure 3. The Log-Likelihood Surface in Two Dimensions for a Range of Values of 𝛽3 and 𝜆2 
 
As can be seen in the graphs, the log-likelihood surfaces are neither smooth nor unimodal, and 
derivatives are undefined.  Thus, Newton-Raphson techniques are not appropriate for maximizing this 
log-likelihood function.  In fact, the multi-modal nature of the surfaces puts any likelihood-based 
technique, including grid searches, at risk of finding a local maximum instead of the overall maximum, 
leading to inaccurate results.   
 
DISCUSSION/CONCLUSION 

High-frequency electronic data from driving studies possess many of the attributes, as well as 
the challenges, of “Big Data”.  In this paper, we emphasize the importance of reducing the volume of 
data, both to facilitate analysis as well as to provide interpretation.  The model which we have proposed 
has interpretable parameters, but it is not clear how best to estimate them.  For the intuitive re-centering 
parameter, it appears that our ad hoc “single-pass” method, despite its known bias, may be better than 
likelihood-based methods.  Recently, O’Shea and Dawson (2018) found that a modified single-pass 
method performed better than the original approach, by imposing the summation constraint in a different 
part of the algorithm.  In the original SP approach, the summation constraint was used before using 
multiple linear regression, so that only two β terms had to be estimated.  In the modified SP approach, 
three β terms were freely estimated by multiple linear regression, and then the summation constraint 
was used to adjust the resulting estimates.  It should also be noted that they found that, when doing 
simulations based on two-group situations, the bias somewhat canceled out between groups. 

The reparameterization of the projection piece of the model into a linear combination of flat, 
linear, and quadratic terms may give better insight than the original model.  For example, Dawson et al. 
(2010) found that the coefficient corresponding to the quadratic projection was 33% higher in drivers 
with Alzheimer’s disease compared to elderly controls.  This suggests when impaired subjects attempt 
to make corrections in the lane position, they may over-correct in an exaggerated fashion rather than in 
a more tempered manner that may be more desirable.  Dawson et al. (2010) also pointed out that the 
respective weights of 0, 1/3, and 2/3 for the flat, linear, and quadratic projections correspond to a  
2nd-order Taylor series expansion of the process.  This enabled them to make a more valid comparison 
between their method and an “entropy” method previously proposed (Boer, 2000). 

The summation and range constraints were initially considered because a) the lane position in 
the driving simulator was well approximated by a model based on weighted polynomial projections, and 
b) using the summation constraint cut down on the dimensionality of the model, making the grid search 
more feasible.  However, due to the problems with the grid search, it may be appropriate to remove 
those constraints altogether from the single-pass algorithms. 

Other approaches to fitting the model might be considered.  Since our SP approaches use 
multiple linear regression that ignores the serial correlation of the adjacent projections, an auto-
regressive technique might be helpful.  It may be possible to use a Bayesian approach to overcome the 
non-smoothness of the likelihood function.      
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Despite the bias that we have found with our estimation techniques, using a modified SP 
approach may be reasonable until better alternatives can be found.  Our model should also be used for 
other types of data, including real-world driving, and other electronic measures besides lane position.  
Ultimately, having effective metrics, models, and estimation methods to distinguish between safe and 
unsafe driving patterns could result in better in-vehicle safety devices, and could also enable the vehicle 
to help diagnose cognitive and motor impairment in drivers. 

There are number of educational lessons that can be highlighted based on the development, 
application, and investigation of our time series model in the context of driving research.  First, it is 
essential that reasonable metrics for data reduction are proposed and investigated.  Although it is 
important to use raw data for exploration and visualization, one generally must greatly reduce the data 
before formal statistical tests can be applied.  Second, if the data reduction is done in subintervals of 
data (e.g., one-minute segments, or for individual drives when participants have multiple drives in the 
database), it is imperative that random effects models are used.  This may seem obvious to most 
statisticians, but we have found that non-statistician members of research teams (e.g., engineers, 
computer scientists, physicians, etc.) are prone to forget this vital issue, and may attempt to present or 
publish results that have a high likelihood of Type I errors.  Third, because of the high volume of data 
that are collected in driving studies, and because such data often take the form of multiple datasets (e.g., 
hundreds of datasets per driver in some on-road studies), it is necessary for statisticians to familiarize 
themselves with looping algorithms that import and process such files in sequence automatically.  
Fourth, a method for estimating the parameters of a proposed model, that appears to work empirically, 
may or may not exhibit appropriate statistical properties when investigated via simulations.  Finally, 
some relatively simple models may end up with non-smooth likelihood functions, which are extremely 
difficult to maximize.   
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